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Model Reduction for Dynamical Systems
with Local Nonlinearities

Zu-Qing Qu¤

Shanghai Jiao Tong University, 200030 Shanghai, People’s Republic of China

Many kinds of nonlinear engineering systems have a large number of degrees of freedom while nonlinear
components are spatially localized. Even though the local nonlinearities constitute only a small part of the system,
the dynamic behavior of the system is wholly nonlinear, and the analysis of the whole model is very expensive.
To reduce the computational effort signi� cantly, two model reduction schemes are proposed to reduce the size of
the nonlinear model before the analysis is performed. One is de� ned on the system level, and the other is on the
substructure level. They are both based on the dynamiccondensation technique. In the former scheme the dynamic
condensation technique is implemented into the linear part of the whole system directly, whereas it is applied to the
linear � exible substructures in the later scheme. The accuracy and stability of the former is usually better than the
latter. However, it is more computationally expensive than the latter. Two numerical examples are also included.
The results show that the present two schemes are feasible and ef� cient to reduce the degrees of freedom of the
model with local nonlinearities.

Nomenclature
C = (n £ n) damping matrix of the full model
C.0/

R = (nk £ nk ) initially or statically approximate damping
matrix of the reduced model

F = external force vector acting on the system
F.0/

R = initially or statically approximate external force
vector of the reduced model

G.X/ = nonlinear force vector
I = (nk £ nk ) identity matrix
K = (n £ n) stiffness matrix of the full model
KL = (n £ n) linear stiffness matrix of the full model with

local nonlinearities
KN = (n £ n) nonlinear stiffness matrix of the full model

with local nonlinearities
K.0/

R = (nk £ nk ) initially or statically approximate stiffness
matrix of the reduced model

M = (n £ n) mass matrix of the full model
M.0/

R = (nk £ nk ) initially or statically approximate mass
matrix of the reduced model

n = number of total degrees of freedom of the full model
R = (nd £ nk ) dynamic condensationmatrix
T = (n £ nk ) coordinate transformationmatrix
X = displacement response vector
PX = velocity response vector
RX = acceleration response vector
’r = rigid mode shape of the substructure

Subscripts

d = parameters associated with the deleted degrees
of freedom

k = parameters associated with the kept degrees
of freedom

R = parameters associated with the reduced model
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Superscripts

i; i C 1 = i th and (i C 1)th approximation
L = linear stiffness matrix
N = nonlinear stiffness matrix
T = matrix transpose
0 = initial or static approximation

Introduction

T HERE are many kinds of nonlinear engineering systems that
have a largenumberof degreesof freedom(DOFs), but nonlin-

ear components are spatially localized. Examples of such systems
are rotating mechanical systems with nonlinear bearing supports,
mechanical systems with dry friction and backlash phenomena in
certain connections, vibration control systems with local nonlinear
springs and/or dampers, etc. From a spatial point of view, although
the local nonlinearitiesconstituteonly a small partof themechanical
system the dynamic behaviorof the system is wholly nonlinear.The
numericalanalysisof the dynamicbehaviorof thesekindsof models
generallyneeds much computing time and can cause computational
problems. How to treat such kinds of systems is an important prob-
lem for nonlinear analysis.1

The simplest method is directly to solve the large order of dy-
namic model using direct integration with iteration in time domain.
Obviously,thismethod is verycomputationallyexpensive.Recently,
severalreductionmethodshavebeenproposedto solve this problem.
In these methods the nonlinearequationsof motion are transformed
into a set of condensed simultaneousnonlinearalgebraic equations.
If the number of these coordinates is very small compared to that
of the entire system, a substantial reduction of computational work
will be expected.

Fey et al.2 studied the long-term behavior of the mechanical sys-
tem with local nonlinearity using component mode synthesis tech-
nique. This method was also used by Nataraj and Nelson.3 A modal
transformation method was used by Zheng and Hasebe1 to reduce
the number of degrees of freedom of linear subset. These works not
only save computing time but also avoid the convergencedif� culty
in numerical calculation. However, the reduced models obtained
from these methods are de� ned in general coordinates or modal
coordinates, and the calculation of the eigenvalues and egenvectors
are required before using these approaches.

Rouch and Kao4 employed Guyan/static5 reduction method to
arrive at a reduced size model. Mclean and Hahn6 proposed a solu-
tion techniquewith a static reduction to evaluate the responseof the
system. Shiau and Jean7 developed a reduction technique,which is
similar to Guyan reduction, to link the harmonic balance method
for investigating the periodic synchronous and nonsynchronousre-
sponse of large-ordernonlinear rotor dynamic systems.
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As we know the inertia terms are ignored in Guyan reduction, the
reduced model obtained from this method is only exact for static
problems. For dynamic problems the accuracy is usually very low
and deeplydependenton the selectionof the kept DOFs. Improperly
kept DOFs or an insuf� cient number of them would result in serious
errors.

To improve the accuracy of the reduced model resulted from
Guyan reduction, the iterative scheme proposed by the author8 re-
cently will be used in this paper. Two schemes for the model reduc-
tion of nonlinear models will be proposed. They are de� ned on the
system and the substructure levels, respectively.Two numerical ex-
amples, a beam-spring system and a � oating raft isolation system,
are included to demonstrate the implementation of the proposed
approaches.

Dynamic Condensation Method
The dynamic equilibrium of a system with n DOFs is given by

M RX C C PX C KX D F (1)

The damping matrix C in Eq. (1) is usually assumed to be propor-
tional to the mass and/or stiffness matrices for structures, that is,

C D ®M C ¯K (2)

® and ¯ are constants.If the total DOFs of the full model are divided
into the kept and deleted DOFs, Eq. (1) can be rearranged in a
partitioned form asµ

Mkk Mkd

Mdk Mdd

¶ » RXk

RXd

¼
C

µ
Ckk Ckd

Cdk Cdd

¶ » PXk

PXd

¼

C
µ

Kkk Kkd

Kdk Kdd

¶ »
Xk

Xd

¼
D

»
Fk

Fd

¼
(3)

Assuming the numbers of the kept and deleted DOFs are nk and
nd , one has nk ¿ nd ¼ n for a big model. Usually, the DOFs on
which the dynamic characteristics (displacements, velocities, ac-
celerations, stresses, etc.) are directly interested are required to be
selected as the kept DOFs.

It can be proven9 that the proportional damping described in
Eq. (2) does not affect the dynamic condensation matrix. Also, the
matrix is a natural property of the system and is independent of the
externalforce.Therefore, the followingequationsare used to obtain
the dynamic condensationmatrix:

µ
Mkk Mkd

Mdk Mdd

¶» RXk

RXd

¼
C

µ
Kkk Kkd

Kdk Kdd

¶»
Xk

Xd

¼
D

»
Fk

0

¼
(4)

The second equation of Eq. (4) can be written as

Xd D ¡K¡1
dd .Mdk

RXk C Mdd
RXd C KdkXk / (5)

Let RXd D 0 and RXk D 0 in Eq. (5), one has

Xd D ¡K¡1
dd KdkXk ´ R.0/Xk (6)

The condensation matrix de� ned in Eq. (6) is identical to the
reductionmatrix in Guyan condensationmethod.Clearly, the inertia
forces in Eq. (5) are ignored when obtaining the reduction matrix
R.0/. Therefore, it is a static condensation, and the condensation
matrix is only exact for static problems. For dynamic problems its
accuracy will decrease with the increase of the natural frequencies
of structures or systems.

Based on the condensationmatrix R.0/ , the dynamic equilibrium
of the reduced model is given by

M.0/

R
RXk C C.0/

R
PXk C K.0/

R Xk D F.0/

R (7)

where the mass matrix M.0/

R , stiffness matrix K.0/

R , and damping
matrix C.0/

R of the statically reduced model are de� ned as

M.0/

R D Mkk C
£
R.0/

¤T
Mdk C MkdR.0/ C

£
R.0/

¤T
MddR.0/ (8a)

K.0/

R D Kkk C
£
R.0/

¤T
Kdk C KkdR.0/ C

£
R.0/

¤T
KddR.0/ (8b)

C.0/

R D Ckk C
£
R.0/

¤T
Cdk C CkdR.0/ C

£
R.0/

¤T
CddR.0/

D ®M.0/

R C ¯K.0/

R (8c)

F.0/

R is the equivalent force vector acting on the system and is given
by

F.0/

R D Fk (9)

If the force vector on the deleted DOFs is not zero, the equivalent
force vector becomes

F.0/

R D Fk C
£
R.0/

¤T
Fd (10)

Research shows that the accuracyof the reducedmodel (8) obtained
from the static reduction is usually very low and dependent on the
selectionof the kept DOFs. If they are selected improperly,the error
is usually very big. To improve the accuracy of the reduced model,
the reduction matrix R.0/ is modi� ed in the following.

The free vibration of the reduced model correspondingto Eq. (7)
is given by

M.0/

R
RXk C K.0/

R Xk D 0 (11)

which leads to

RXk D ¡
£
M.0/

R

¤¡1
K.0/

R Xk (12)

By differentiating both sides of Eq. (6) with respect to time twice
and then using Eq. (12), one obtains

RXd D R.0/ RXk D ¡R.0/
£
M.0/

R

¤¡1
K.0/

R Xk (13)

Introducing Eqs. (12) and (13) into Eq. (5) results in

Xd D K¡1
dd

¥£
Mdk C MddR.0/

¤£
M.0/

R

¤¡1
K.0/

R ¡ Kdk

¦
Xk (14)

According to the de� nition of the dynamic condensation matrix R
in Eq. (6), its � rst approximation results from Eq. (14) as

R.1/ D K¡1
dd

¥£
Mdk C MddR.0/

¤£
M.0/

R

¤¡1
K.0/

R ¡ Kdk

¦
(15)

The � rst approximation of the mass matrix M.1/

R , stiffness matrix
K.1/

R , and damping matrix C.1/

R of the reduced model can be obtained
similarly from Eq. (8) by using the dynamic condensation matrix
R.1/ . The accuracy of the matrices K.1/

R and M.1/

R is higher than
the matrix K.0/

R and M.0/

R because the inertia forces are considered
partially in the condensationmatrix R.1/ .

Repeating the procedure de� ned by Eqs. (8–15), the dynamic
characteristicsof the reduced model will gradually close to the full
model at the low-frequency range.

Model Reduction on the System Level
Suppose the dynamic equilibrium of a nonlinear system with n

DOFs can be expressed as

M RX C C PX C .KL C KN /X D F (16)

where the nonlinear stiffness matrix KN is usually a function of the
displacements.For convenience,Eq. (16) is sometimes rewrittenas1

M RX C C PX C KL X D F C G.X/ (17)

The nonlinear force vector G.X/ is related to the nonlinear compo-
nents of the system. It can be expressed as a nonlinear function of
the displacements at positions associated with the nonlinear com-
ponents, that is,

G.X/ D ¡KN X (18)

Similarly, if the total DOFs of the full model are divided into the
kept and the deleted DOFs, Eq. (16) can be partitioned as
µ

Mkk Mkd

Mdk Mdd
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RXd

¼
C

µ
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KN
dk KN
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D

»
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Fd

¼
(19)
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As shown in Eq. (6), the relation of the displacements between the
kept and deleted DOFs is de� ned by the dynamic condensationma-
trix. Using this condensation matrix, the following transformation
is de� ned:

X D
»

Xk

Xd

¼
D

»
I

R

¼
Xk D TXk (20)

whereR is thedynamiccondensationmatrixde� ned in thepreceding
section. Because the dynamic condensation matrix is independent
of time, we have

» PXk

PXd

¼
D T PXk ;

» RXk

RXd

¼
D T RXk (21)

Introducing Eqs. (20) and (21) into Eq. (19) and premultiplying it
by the transpose of matrix T leads to

MR
RXk C CR

PXk C KL
RXk C KN

R Xk D FR (22)

The reducedsystemmatricesand forcevector in Eq. (22) are de� ned
as

MR D TT MT D Mkk C RT Mdk C MkdR C RT MddR (23a)

KL
R D TT KL T D KL

kk C RT KL
dk C KL

kdR C RT KL
ddR (23b)

CR D ®MR C ¯KL
R (23c)

KN
R D TT KN T D KN

kk C RT KN
dk C KN

kdR C RT KN
ddR (23d)

FR D TT F D Fk C RT Fd (23e)

As just mentioned, the kept DOFs usually include those on which
the dynamic characteristicsare directly interested.For the nonlinear
model the kept DOFs should also include those on which the non-
linear force vector G is directly dependent.Based on this selection,
one has

KN
kd D

¡
KN

dk

¢T D 0; KN
dd D 0 (24)

Consequently, the nonlinear stiffness matrix of the reduced model
de� ned in Eq. (23d) becomes

KN
R D KN

kk (25)

Equation (25) indicates that the nonlinearpart of the reducedmodel
is independent of the dynamic condensationmatrix and can be ob-
tained directly from the full model.

The main steps for the model reduction on the system level are
listed here:

1) Construct the mass, damping, linear stiffness matrices, and
external force vector. Construct the corresponding linear dynamic
equations.

2) Compute the dynamic condensationmatrix using the iterative
method described in the preceding section.

3) Formulate the mass, damping, linear stiffness matrices, and
force vector of the reduced model using Eq. (23).

4) Assemble the nonlinear components to construct the reduced
model of the whole system. It should be noticed that the effect of
the nonlinear properties on the dynamic condensationmatrix is not
considered.Consequently, the present approach is usually valid for
the system with local nonlinearities.

Model Reduction on the Substructure Level
There are a large number of systems that consist of one or more

� exible components or substructures. Several examples of these
systems are machines together with their isolation system such as
� oating raft isolation systems,9;10 vehicle-bridge systems,11 rotor-
dynamic systems,7 etc. For these systems the � nite element method
is usually applied to discretize the � exible substructures at � rst.
Then, the � nite element models de� ned in the full spaces are assem-
bled together with the springs, dampers, and concentrated masses
to formulate the global model of the whole system. This is the most
accurate modeling approach for these kinds of complex systems.

Substructure

a

b

· · ·

FEM

FEM

aa KM ,

bb KM ,

· · ·

DC

DC

aa
RR KM ,

bb
RR KM ,

· · ·

Full Model Reduced Model

Superelement

KM ,

Assembling

RR KM ,

Assembling

Global Global

Substructure

Substructure

Substructure

Nonlinear

Linear

Linear

Superelement

Fig. 1 Comparison of two system modeling schemes.

However, to ensure that the results have the necessary accuracy, the
� nite elementmodels of these � exible substructuresare usuallyvery
large.12 This leads to a quite large � nal model of the whole system.

For these kinds of models, we can reduce their sizes on the sub-
structure level. The logic of the formulation of the global model
based on the full and the reduced � nite element models of the sub-
structures is shown in Fig. 1. For simplicity, only two � exible sub-
structures are drawn in the system. The “DC” in this � gure denotes
dynamiccondensation.Fromthis � gure we knowthat the sizesof the
� exible substructures are reduced before the assemblage. Because
only the connectingpart is nonlinear,we do not need to consider the
nonlinearity during the construction of the reduced model of each
substructure. Assume the dynamic equations of the corresponding
reduced model is

QMR
RXk C QCR

PXk C QKL
RXk C QKN Xk D QFR (26)

The main steps for the model reductionon the substructurelevel are
as follows:1) divide the whole systeminto several substructuresand
other components; 2) construct the system matrices for each linear
� exible substructure and then formulate the correspondingreduced
model using the method in the secondsection;and 3) assemble these
reduced models and other components to formulate the reduced
global model of the whole system. Because the size of the reduced
model of each substructure is much smaller than the size of the
corresponding full model, the total DOFs of the reduced global
model are much less than that of the full global one. This idea was
used by the author recently in linear models.13

Because the number of the DOFs of the substructures is much
smaller than in thewhole fullmodel, thecomputationof the dynamic
condensationmatrix on the substructurelevel is much more ef� cient
than on the system level. If there are identical substructures, the
corresponding reduced models are only required to be constructed
once, and, hence, much computationalwork can be saved. Another
advantage of the model reduction on the substructure level is that
we do not need to worry about the nonlineareffects becauseonly the
linear substructuresare reduced. However, some informationmight
be lost if the kept DOFs of the substructureare not selectedproperly.

As we know, the substructure isolated from the whole system is
usually free and has rigid mode(s). It is, therefore, very important
that the reduced model retains the rigid modes(s) of the full model
during iterating. This will be proven in the following.

Suppose the full � nite element model of a substructure has rigid
modeshape(s) ’r , that is,

K’r D 0 (27)

or in a partitioned form
µ

Kkk Kkd

Kdk Kdd

¶ »
’rk

’rd

¼
D

»
0

0

¼
(28)

Equation (28) is equivalent to the following two equations:

Kkk’rk C Kkd’rd D 0 (29a)

Kdk’rk C Kdd’rd D 0 (29b)
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Equation (29b) leads to

’rd D ¡K¡1
dd Kdk’rk (30)

Introducing Eq. (30) into Eq. (29a) results in
¡
Kkk ¡ KkdK¡1

dd Kdk

¢
’rk D K.0/

R ’rk D 0 (31)

Equation(31)means that the reducedmodelobtainedfrom the initial
approximation of the dynamic condensation,Guyan condensation,
can retain the rigid mode shape(s) of the full model.

The expression of the (i C 1)th approximate dynamic condensa-
tion matrix can be similarly obtained from Eq. (15) as

R.i C 1/ D K¡1
dd

¥£
Mdk C MddR.i /

¤£
M.i/

R

¤¡1
K.i /

R ¡ Kdk

¦
(32)

For convenience, it is rewritten as

R.i C 1/ D R.0/ C 1R.i C 1/ (33)

where

1R.i C 1/ D K¡1
dd

£
Mdk C MddR.i/

¤£
M.i/

R

¤¡1
K.i/

R D E.i/K.i/
R (34)

Using Eq. (33), the (i C 1)th approximation of the stiffness matrix
of the reduced model becomes

K.i C 1/

R D Kkk C
£
R.0/

¤T
Kdk C KkdR.0/ C

£
R.0/

¤T
KddR.0/

C
£
1R.i C 1/

¤T
Kdk C Kkd1R.i C 1/ C

£
R.0/

¤T
Kdd1R.i C 1/

C
£
1R.i C 1/

¤T
KddR.0/ C

£
1R.i C 1/

¤T
Kdd1R.i C 1/ (35)

Considering
£
R.0/

¤T
Kdd1R.i C 1/ D ¡Kkd1R.i C 1/ (36a)

£
1R.i C 1/

¤T
KddR.0/ D ¡

£
1R.i C 1/

¤T
Kdk (36b)

Equation (35) can be simpli� ed as

K.i C 1/

R D K.0/

R C
£
1R.i C 1/

¤T
Kdd1R.i C 1/ (37)

The following three steps are used to prove the conclusion:
1) For the initialapproximationthe stiffnessmatrix of the reduced

model is K.0/

R . From Eq. (31) we know it retains the rigid mode(s)
of the full model.

2) Suppose the i th approximatestiffnessmatrix containsthe rigid
mode shape(s) ’rk, that is,

K.i/
R ’rk D 0 (38)

3) Let us consider the (i C 1)th approximate stiffness matrix of
the substructure.Substituting Eq. (34) into Eq. (37) results in

K.i C 1/

R D K.0/

R C
£
K.i/

R

¤T £
E.i/

¤T
KddE.i/K.i/

R (39)

Using Eqs. (31) and (38) results in

K.i C 1/

R ’rk D K.0/

R ’rk C
£
K.i/

R

¤T £
E.i /

¤T
KddE.i /K.i/

R ’rk D 0 (40)

Equation (40) means that the (i C 1)th approximate stiffness ma-
trix K.i C 1/

R also contains the same rigid mode shape(s) of the full
model.

Based on the statements1–3, we concludethat the reducedmodel
contains the rigid mode(s) of the full model during iterating.There-
fore, the present method is still valid when the substructure is free
or there is rigid mode(s) in the substructure. This conclusion was
tested analytically on a three-DOF mass-stiffness system.14

22
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

42

k k k k k k
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BB B B B B

Fig. 2 Schematic of a beam-spring compound system.

Numerical Examples
Beam-Spring System

A simple system shown in Fig. 2 will be considered � rst. It con-
sists of two identical beams connected by six springs. The proper-
ties of the two beams are total length L D 2:0 m, area of the cross
section A D 2:4 £ 10¡4 m2 , area moment of inertia of the section
I D 8:9 £ 10¡9 m4, modulus of elasticity E D 2:0 £ 1011 N/m2 , and
mass density ½ D 7800 kg/m3 . The linear stiffness of the springs
is k D 2:0 £ 105 N/m. Also, the six springs are assumed to be
nonlinear with a cubic stiffening nonlinearity B D 2:0 £ 1014N/m3.
This means that the spring force for an absolute displacement x is
f D kx C Bx3 . The two beams are both discretized by the � nite el-
ement method. Each beam has a total of 20 elements, 21 nodes, and
42 DOFs, as shown in Fig. 3. Therefore, the global full model has a
total of 82 DOFs.

Many methods can be implemented to solve the nonlinear dy-
namic Eqs. (16), (22), and (26) in the frequency domain. Some
typical versions are the perturbation,Ritz, Galerkin, and harmonic
balance methods. The detailed information about these methods
can be found from Ref. 15. The harmonic balance method is used
to solve the nonlinear equations in this paper.

Assume that the excitations have the form of F D F0 sin.!t/. If
only the periodic motions are considered, the steady-state response
is expressed as

xi D
mX

j D 1

ai j cos. j!t/ C bi j sin. j!t/ (41)

For simplicity, only the � rst two terms, which have the same har-
monic with the excitation,are applied to calculate the response,that
is,

xi D ai cos.!t/ C bi sin.!t/ (42)

The correspondingamplitude is

jxi j D
p

a2
i C b2

i (43)

Introducing Eq. (42) into Eq. (16), (22), or (26) gives a set of si-
multaneouspolynomials in the constants ai and bi . These nonlinear
polynomial equations can be solved using the Newton–Raphson
method.

Assume a unit force is acted on node 9 at the transverse direc-
tion. The amplitude-frequency relation curves (backbone curves)
at nodes 9 and 30 resulted from the full global model are plotted
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Fig. 3 FRFs with and without nonlinear springs.
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in Fig. 3. In this � gure L and N denote linear and nonlinear, re-
spectively; 9 and 30 are node numbers. For simplicity, the jumps
of the amplitudes are kept in these curves. Therefore, they are not
exactly backbone curves. Although they are approximate, they will
serve the purpose to check the accuracy of the reduced model. The
transversefrequencyresponse function (FRF) at nodes 9 and 30 for
the system without nonlinear springs, indicated by L, is also plot-
ted in Fig. 3 for comparison. In these four curves the proportional
damping, C D 2 £ 10¡5K, is assumed for the two beams. For conve-
nience the amplitude-frequencycurves of the nonlinear system are
also called FRFs.

At � rst, the model reduction scheme de� ned on the system level
is used. The transverse DOFs at nodes 1, 5, 9, 13, 17, 21, 7, and 15
in the upper beam and nodes 22, 26, 30, 34, 38, 42, 28, and 36 in
the lower beam are selected as the kept DOFs when the dynamic
condensation method is applied. Hence, the reduced model has 16
DOFs includingthe two � xedones.After the linear reducedmodel is
available, the nonlinear springs are directly assembled to formulate
the reduced global model. Again, the harmonic balance method is
used to solve the nonlinear equations of the reduced model.

The FRFs of the reducedmodel at nodes9 and 30 in the transverse
directionsareplottedin Fig.4, respectively.The exact resultsarealso
plotted for comparison. In the following, if the FRFs obtained from
the reduced model are very close to those from the full model we
will say the reduced model can represent accurately the full model
at that frequency range. The accuracyof the FRFs resulted from the
initial approximation of the reduced model is very low especially
for the FRFs at the high frequency range. With the increase in the
number of iterations, the FRFs close to the exact solution quickly.
The FRFs resulting from the second approximation, for example,
are very close to the exact except at the jump around 1000 rad/s.
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Fig. 4 FRFs of the reduced model de� ned on the system level.
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Fig. 5 FRFs of the reduced model de� ned on the substructure level.

The reason for this discrepancy at this jump is that these curves
are not exact backbone curves. Actually, the differencebetween the
approximate FRFs with i D 2 and the exact is very small.

The two beams are selectedas the � exible substructureswhen the
model reduction scheme de� ned on the substructure level is used.
The same kept DOFs are chosen for each beam. Because the two
beams are identical, it is necessary to construct only one reduced
model for the beams using the dynamic condensation technique.
The system modeling scheme shown in Fig. 1 is used. The reduced
global model has 16 DOFs including the two � xed.

Similarly, the FRFs of the reduced model at nodes 9 and 30 are
plotted in Fig. 5. The exact results are also plotted for comparison.
The accuracy of the initial approximation is low, especially for the
FRFs at the high-frequency range, as shown in Fig. 5. With the
increase in the number of iterations, the FRFs close to the exact
solutionquickly.The � rst approximation,for example,is much more
accurate than the initial approximation.

The accuracyof the approximateFRFs resulted from the reduced
model de� ned on the system level is a little higher than the reduced
model de� ned on the substructurelevel.This phenomenonbecomes
obvious when i D 1 and 2, as shown clearly in Figs. 4 and 5.

For this example,751 time step is used to simulate the FRFs of the
full global model and the reduced global models. The code is run in
a Sun 4500 computer with 400 £ 8 MHz CPU, 4-GB memory. The
computed time for the two models are 2999, 26 and 25 s, respec-
tively. Clearly, the reduced model is much more computationally
ef� cient than the full model.

Floating Raft Isolation System
For the second example, a � oating raft isolation system13 is con-

sidered. It contains springs, dampers, machines to be isolated, a
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Fig. 6 FRFs of the � oating raft isolation system.
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Fig. 7 Error of the FRFs of the reduced model de� ned on system level.

raft frame, and a base. It is very dif� cult to construct a reason-
able dynamic model by using multi-rigid-body method or elastic
wave analysis method when the raft frame and the base are a little
complex, their elasticity are to be considered, and there are local
nonlinearities.9

One springwith cubicstiffeningnonlinearity,B D 5 £ 1010 N/m3,
is mounted under masses 1 and 2, respectively. For both plates the
damping is considered to be proportionalto their stiffness matrices,
and the ratio is 0.0003. The other parameters are identical to those
in Ref. 13. The base and the raft are discretized by the � nite el-
ement method. The base has 14 rectangular elements, 24 nodes,
and 72 DOFs. The raft has 24 rectangular elements, 35 nodes,
and 105 DOFs. Therefore, the full global model has a total of
167 DOFs except the � xed. Select the translational DOFs at m1

and node 11 on the base as the input and output DOFs, respectively.
The FRFs obtained from the full global � nite element model are
plotted in Fig. 6. They are considered as the exact for comparison
purpose.

For the model reduction method de� ned on the system level, the
translationaldisplacements in the z direction at nodes 1, 3, 5, 7, 15,
17,19,21,29, 31,33, and 35 on the raft andnodes7, 12,13,18,8, 11,
14, 17, 9, 10, 15, and 16 on the base, and masses 1 and 2 are selected
as the kept DOFs. The FRFs resultingfrom the initial approximation
of the reduced model are shown in Fig. 6 and indicated by SY. The
relative errors of the FRFs obtained from the reduced models with
different approximations are plotted in Fig. 7. The accuracy of the
FRFs obtained from the initial approximation is very low. Most
errors are higher than 10%. When the iteration is applied, the errors
are reduced very quickly. The maximum errors, for example, are
reducedto 11.7,4.1, and 1.9%after one, two, and three iterationsare
used.
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Fig. 8 Error of the FRFs of the reduced model de� ned on substructure
level.
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Fig. 9 Comparison of the errors from the two reduced models.

The two plates in the systemare seen as two � exible substructures
when the model reduction de� ned on the substructure level is used.
The same DOFs on the two plates just used are selected kept DOFs.
Both reduced models of the plates have 12 DOFs. Therefore, the
reduced global model has 26 DOFs. The FRFs resulting from the
initially approximate reduced model are also shown in Fig. 6 and
indicated by SU. The errors of the FRFs obtained from the reduced
models for different approximationsare plotted in Fig. 8. Similarly,
the errors of the initial approximateFRFs are very big. The error is
reduced when the iteration increases, especially for the FRFs at the
high-frequencyrange.

For this example, 2501 time step is used to simulate the FRFs
of the full global model and reduced global models. The code is
run in the same computer as just stated. The computed time for the
two models are 1452, 6, and 6 s, respectively.The reduced model is
much more computationally ef� cient than the full model. The cur-
rent computer time is shorter than that in the � rst example although
the number of DOFs of the present example is about double that of
the � rst example. The reason is that the nonlinearity in the present
example is much more localized than that in the � rst example. Con-
sequently, more iterations are required in the � rst example.

The initially approximate FRFs resulting from the two model
reduction approaches are very close, as shown in Fig. 6. However,
thedifferencebecomesclearwhen the iterationis applied.The errors
of the FRFs resulting from the reduced models for i D 1 and 3 are
plottedin Fig. 9. Clearly,theaccuracyof themodel reductionde� ned
on the system level is much higher than the one de� ned on the
substructure level.

Comparing the FRFs for i D 0 in Fig. 6 with those in Figs. 4 and 5,
we � nd theaccuracyof the former is higherthan thatof the latter two.
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One of the reasons is that the nonlinearity in the second example
is much more localized than that in the � rst example. Therefore,
the present methods have higher accuracy for the system with local
nonlinearities.

Conclusions
Based on the dynamic condensationtechnique, two model reduc-

tion approaches have been proposed in this paper. They are used
to reduce the size of the large model with local nonlinearities be-
fore the analysis is performed on the global model. One is de� ned
on the system level, and the other is on the substructure level. In
the former scheme the dynamic condensation technique is directly
implemented into the linear part of the whole system, whereas it is
applied to the linear � exible substructures in the latter scheme.

As shown in the two numerical examples, the computational
work can be reduced signi� cantly by using the two approaches.
Although some computational effort is required to construct the
reduced model, this work is much less than the analysis of the non-
linear model directly and only required once.

The accuracy of the reduced models based on the initial approx-
imation, Guyan condensation, is very low. When the iterations are
applied, the accuracy increasesvery quickly.As shown from the ex-
amples, two or three iterations are usually enough for the accuracy.

The accuracy of the model reduction method de� ned on the
system level is usually higher than that of the method de� ned on the
substructure level, especially for the higher-order approximations.
However, the former is more computationally expensive than the
latter because the manipulation of larger matrices is required in the
former approach.
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