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Model Reduction for Dynamical Systems
with Local Nonlinearities

Zu-Qing Qu*
Shanghai Jiao Tong University, 200030 Shanghai, People’s Republic of China

Many kinds of nonlinear engineering systems have a large number of degrees of freedom while nonlinear
components are spatially localized. Even though the local nonlinearities constitute only a small part of the system,
the dynamic behavior of the system is wholly nonlinear, and the analysis of the whole model is very expensive.
To reduce the computational effort significantly, two model reduction schemes are proposed to reduce the size of
the nonlinear model before the analysis is performed. One is defined on the system level, and the other is on the
substructure level. They are both based on the dynamic condensation technique. In the former scheme the dynamic
condensation technique is implemented into the linear part of the whole system directly, whereas it is applied to the
linear flexible substructures in the later scheme. The accuracy and stability of the former is usually better than the
latter. However, it is more computationally expensive than the latter. Two numerical examples are also included.
The results show that the present two schemes are feasible and efficient to reduce the degrees of freedom of the

model with local nonlinearities.

Nomenclature

C = (n x n) damping matrix of the full model

C g]) (n; x ny) initially or statically approximate damping
matrix of the reduced model

F = external force vector acting on the system

F f) initially or statically approximate external force
vector of the reduced model

G(X) = nonlinearforce vector

I = (n; x ny) identity matrix

K = (n x n) stiffness matrix of the full model

K- = (n x n) linear stiffness matrix of the full model with
local nonlinearities

KN = (n x n) nonlinear stiffness matrix of the full model
with local nonlinearities

K(RO) = (n; x ny) initially or statically approximate stiffness
matrix of the reduced model

M = (n x n) mass matrix of the full model

M g]) = (n; x n) initially or statically approximate mass

matrix of the reduced model

n = number of total degrees of freedom of the full model

R = (n4 x n;) dynamic condensation matrix

T = (n x ng) coordinate transformation matrix

X = displacementresponse vector

X = velocity response vector

X = accelerationresponse vector

O = rigid mode shape of the substructure

Subscripts

d = parameters associated with the deleted degrees
of freedom

k = parameters associated with the kept degrees
of freedom

R = parameters associated with the reduced model
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Superscripts

i,i+1 = ithand (i 4+ )th approximation
= linear stiffness matrix

= nonlinear stiffness matrix

= matrix transpose

= Iinitial or static approximation

o~ =~

Introduction

HERE are many kinds of nonlinear engineering systems that

have a large number of degrees of freedom (DOFs), but nonlin-
ear components are spatially localized. Examples of such systems
are rotating mechanical systems with nonlinear bearing supports,
mechanical systems with dry friction and backlash phenomena in
certain connections, vibration control systems with local nonlinear
springs and/or dampers, etc. From a spatial point of view, although
the local nonlinearitiesconstituteonly a small part of the mechanical
system the dynamic behaviorof the system is wholly nonlinear. The
numerical analysis of the dynamic behaviorof these kinds of models
generally needs much computing time and can cause computational
problems. How to treat such kinds of systems is an important prob-
lem for nonlinear analysis.!

The simplest method is directly to solve the large order of dy-
namic model using direct integration with iteration in time domain.
Obviously, this methodis very computationallyexpensive.Recently,
severalreductionmethods have been proposed to solve this problem.
In these methods the nonlinearequations of motion are transformed
into a set of condensed simultaneousnonlinearalgebraic equations.
If the number of these coordinates is very small compared to that
of the entire system, a substantial reduction of computational work
will be expected.

Fey et al.? studied the long-term behavior of the mechanical sys-
tem with local nonlinearity using component mode synthesis tech-
nique. This method was also used by Nataraj and Nelson.> A modal
transformation method was used by Zheng and Hasebe! to reduce
the number of degrees of freedom of linear subset. These works not
only save computing time but also avoid the convergencedifficulty
in numerical calculation. However, the reduced models obtained
from these methods are defined in general coordinates or modal
coordinates, and the calculation of the eigenvalues and egenvectors
are required before using these approaches.

Rouch and Kao* employed Guyan/static’ reduction method to
arrive at a reduced size model. Mclean and Hahn® proposeda solu-
tion technique with a static reduction to evaluate the response of the
system. Shiau and Jean’ developed a reduction technique, which is
similar to Guyan reduction, to link the harmonic balance method
for investigating the periodic synchronous and nonsynchronousre-
sponse of large-ordernonlinear rotor dynamic systems.
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As we know the inertia terms are ignored in Guyan reduction, the
reduced model obtained from this method is only exact for static
problems. For dynamic problems the accuracy is usually very low
and deeply dependenton the selection of the kept DOFs. Improperly
kept DOFs or an insufficient number of them would resultin serious
errors.

To improve the accuracy of the reduced model resulted from
Guyan reduction, the iterative scheme proposed by the author® re-
cently will be used in this paper. Two schemes for the model reduc-
tion of nonlinear models will be proposed. They are defined on the
system and the substructurelevels, respectively. Two numerical ex-
amples, a beam-spring system and a floating raft isolation system,
are included to demonstrate the implementation of the proposed
approaches.

Dynamic Condensation Method
The dynamic equilibrium of a system with n DOFs is given by

MX+CX+KX=F 1)

The damping matrix C in Eq. (1) is usually assumed to be propor-
tional to the mass and/or stiffness matrices for structures, that is,

C =aM + BK @)

o and B are constants. If the total DOFs of the full model are divided
into the kept and deleted DOFs, Eq. (1) can be rearranged in a

partitioned form as
[Mkk Mkd} {Xk} N [ckk de} {Xk}
My My |X, Ca Cu] Xy

N [Kkk de} {Xk} _ {Fk }

Ko Kaa] | Xa F,
Assuming the numbers of the kept and deleted DOFs are n;, and
ng4, one has ny < nyz~n for a big model. Usually, the DOFs on
which the dynamic characteristics (displacements, velocities, ac-
celerations, stresses, etc.) are directly interested are required to be
selected as the kept DOFs.

It can be proven’ that the proportional damping described in
Eq. (2) does not affect the dynamic condensation matrix. Also, the
matrix is a natural property of the system and is independent of the
externalforce. Therefore, the following equations are used to obtain
the dynamic condensation matrix:

(3)

[Mkk Mkd} {Jfk } N [Kkk de} {Xk } _ {Fk} @
My My | X, Ka Ku| | Xa 0
The second equation of Eq. (4) can be written as
X, = —Kd_dl (M X, + MaX, + Ko Xy) %)
Let Xd =0 and Xk =01in Eq. (5), one has
X, = —K/KuX, = ROX, 6)

The condensation matrix defined in Eq. (6) is identical to the
reductionmatrix in Guyan condensationmethod. Clearly, the inertia
forces in Eq. (5) are ignored when obtaining the reduction matrix
R©. Therefore, it is a static condensation, and the condensation
matrix is only exact for static problems. For dynamic problems its
accuracy will decrease with the increase of the natural frequencies
of structures or systems.

Based on the condensationmatrix R©, the dynamic equilibrium
of the reduced model is given by

MPX, + CYOX, + KX, = FY) )

where the mass matrix Mg]), stiffness matrix Kg]), and damping

matrix C (Rp) of the statically reduced model are defined as

MO = My + [RO] My + MR + [RO] MuR®  (82)
K(RO) = Ky + [R(O)]Tde + KRV + [R(O)]TKddR(O) (8b)
C¥ = o+ [R®] Cu + CuR® + [RO] C.uR®

=aM? + K (8¢c)
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Ff) is the equivalent force vector acting on the system and is given
by
0
FY =F, ©)
If the force vector on the deleted DOFs is not zero, the equivalent
force vector becomes

FO =F, +[R"]'F, (10)
Research shows that the accuracy of the reduced model (8) obtained
from the static reduction is usually very low and dependent on the
selection of the kept DOFs. If they are selected improperly, the error
is usually very big. To improve the accuracy of the reduced model,
the reduction matrix R is modified in the following.

The free vibration of the reduced model correspondingto Eq. (7)
is given by

Mg])X.;k +K(RO)Xk :0 (11)
which leads to
X, = -[MP] 'kOx, (12)

By differentiating both sides of Eq. (6) with respect to time twice
and then using Eq. (12), one obtains

X, =ROX, = —RO[M"] 'KVx, (13)
Introducing Egs. (12) and (13) into Eq. (5) results in
-1
X, =K' [Ma + MuRO|[MY] KY — K |Xe (14

According to the definition of the dynamic condensation matrix R
in Eq. (6), its first approximationresults from Eq. (14) as
R =K, | [My + MuRO[MO] 'K — Ky, | (15)
The first approximation of the mass matrix M(RI), stiffness matrix
K(RI), and damping matrix C(,;) of the reduced model can be obtained
similarly from Eq. (8) by using the dynamic condensation matrix
R™ . The accuracy of the matrices Ky’ and M}’ is higher than
the matrix K(RO) and Mg]) because the inertia forces are considered
partially in the condensation matrix R,
Repeating the procedure defined by Eqs. (8-15), the dynamic
characteristics of the reduced model will gradually close to the full
model at the low-frequency range.

Model Reduction on the System Level
Suppose the dynamic equilibrium of a nonlinear system with n
DOFs can be expressed as
MX +CX + (K" +K")X =F (16)
where the nonlinear stiffness matrix KV is usually a function of the
displacements.For convenience,Eq. (16) is sometimes rewritten as!

MX + CX +K"X = F + G(X) (17)
The nonlinear force vector G(X) is related to the nonlinear compo-
nents of the system. It can be expressed as a nonlinear function of
the displacements at positions associated with the nonlinear com-
ponents, that is,

GX) =-K'X (18)
Similarly, if the total DOFs of the full model are divided into the
kept and the deleted DOFs, Eq. (16) can be partitioned as

[Mkk Mkd} {Xk}+[ckk ckd} {&}{K@ Kéd} {X}
My Mgy | | X, Cu Cu] | X, Ki K| | Xa
N Ky K| [Xe| _ [F (19)
Ké\l/( Ké\{i Xy F,



As shown in Eq. (6), the relation of the displacements between the
kept and deleted DOFs is defined by the dynamic condensationma-
trix. Using this condensation matrix, the following transformation

is defined:
X 1
X = = X, =TX;
Xy R

where R is the dynamic condensationmatrix defined in the preceding
section. Because the dynamic condensation matrix is independent
of time, we have

X; : X, .
L =TX,, Sl =TX,
Xd Xd

Introducing Eqgs. (20) and (21) into Eq. (19) and premultiplying it
by the transpose of matrix T leads to

(20)

2n

MgX; + CrX; + K5X, + KY X, = Fy (22)
The reduced system matrices and force vectorin Eq. (22) are defined

as

Mg =T"MT =My +R" My + MR +R" MR (232)
Ky=T'K'T=K. +R" K}, +K,R+R"K;,R (23b)

Cr = aMy + BK: (23¢)

Ky =T"K"T =K\ +R"K), +K\R+R"K}R (23d)

Fr=T'F=F,+R"F, (23e)

As just mentioned, the kept DOFs usually include those on which
the dynamic characteristicsare directly interested. For the nonlinear
model the kept DOFs should also include those on which the non-
linear force vector G is directly dependent. Based on this selection,
one has

K= (K)) =0, K =0 (24)
Consequently, the nonlinear stiffness matrix of the reduced model
defined in Eq. (23d) becomes

KY = KN (25)

Equation (25) indicates that the nonlinear part of the reduced model
is independent of the dynamic condensation matrix and can be ob-
tained directly from the full model.

The main steps for the model reduction on the system level are
listed here:

1) Construct the mass, damping, linear stiffness matrices, and
external force vector. Construct the corresponding linear dynamic
equations.

2) Compute the dynamic condensation matrix using the iterative
method described in the preceding section.

3) Formulate the mass, damping, linear stiffness matrices, and
force vector of the reduced model using Eq. (23).

4) Assemble the nonlinear components to construct the reduced
model of the whole system. It should be noticed that the effect of
the nonlinear properties on the dynamic condensation matrix is not
considered. Consequently, the present approachis usually valid for
the system with local nonlinearities.

Model Reduction on the Substructure Level

There are a large number of systems that consist of one or more
flexible components or substructures. Several examples of these
systems are machines together with their isolation system such as
floating raft isolation systems,”!* vehicle-bridge systems,!! rotor-
dynamic systems,” etc. For these systems the finite element method
is usually applied to discretize the flexible substructures at first.
Then, the finite element models defined in the full spaces are assem-
bled together with the springs, dampers, and concentrated masses
to formulate the global model of the whole system. This is the most
accurate modeling approach for these kinds of complex systems.

QU
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Fig.1 Comparison of two system modeling schemes.

However, to ensure that the results have the necessary accuracy, the
finite element models of these flexible substructuresare usually very
large.'? This leads to a quite large final model of the whole system.

For these kinds of models, we can reduce their sizes on the sub-
structure level. The logic of the formulation of the global model
based on the full and the reduced finite element models of the sub-
structures is shown in Fig. 1. For simplicity, only two flexible sub-
structures are drawn in the system. The “DC” in this figure denotes
dynamiccondensation.From this figure we know that the sizes of the
flexible substructures are reduced before the assemblage. Because
only the connecting part is nonlinear, we do not need to consider the
nonlinearity during the construction of the reduced model of each
substructure. Assume the dynamic equations of the corresponding
reduced model is

MyX + CrXi + KiX, + KV X, = Fg (26)

The main steps for the model reduction on the substructurelevel are
as follows: 1) divide the whole systeminto several substructuresand
other components; 2) construct the system matrices for each linear
flexible substructure and then formulate the correspondingreduced
model using the method in the second section;and 3) assemble these
reduced models and other components to formulate the reduced
global model of the whole system. Because the size of the reduced
model of each substructure is much smaller than the size of the
corresponding full model, the total DOFs of the reduced global
model are much less than that of the full global one. This idea was
used by the author recently in linear models.!3

Because the number of the DOFs of the substructures is much
smaller thanin the whole full model, the computationof the dynamic
condensationmatrix on the substructurelevel is much more efficient
than on the system level. If there are identical substructures, the
corresponding reduced models are only required to be constructed
once, and, hence, much computational work can be saved. Another
advantage of the model reduction on the substructure level is that
we do notneed to worry about the nonlineareffects because only the
linear substructuresare reduced. However, some information might
be lostif the kept DOFs of the substructure are not selected properly.

As we know, the substructure isolated from the whole system is
usually free and has rigid mode(s). It is, therefore, very important
that the reduced model retains the rigid modes(s) of the full model
during iterating. This will be proven in the following.

Suppose the full finite element model of a substructure has rigid
modeshape(s) ¢,, that is,

Ko, =0 (27)
or in a partitioned form
e R
Equation (28) is equivalent to the following two equations:
K@i + Kiara =0 (29a)
Kaypu + Kaapra = 0 (29b)



330
Equation (29b) leads to
Prd = _Kd_dlek(Prk (30)
Introducing Eq. (30) into Eq. (29a) results in
(Kkk - deKd_dlek)(Prk = Kg])tﬂrk =0 3D

Equation(31) means that the reduced model obtained from the initial
approximation of the dynamic condensation, Guyan condensation,
can retain the rigid mode shape(s) of the full model.

The expression of the (i + 1)th approximate dynamic condensa-
tion matrix can be similarly obtained from Eq. (15) as

i i DR
ROTD = K| [Mox + MRV [MY ] KY —Ka]  (32)
For convenience, it is rewritten as
R'*D =R” + ARV (33)

where
i - i DA i) (i
ARV = K[ [Muy + MuRV|[M] KQ =EVKY  (34)

Using Eq. (33), the (i + 1)th approximation of the stiffness matrix
of the reduced model becomes

KD = Ky + [RO] Ky + KR + [R] KR

+[AR V] Ky + K ARV + [RO]” Kig AR

+ AR ”]TKddR(”) + AR ”]TKddAR(’”’ ) (35)
Considering
[R(O)]TKddAR(i+ D= K ARCTY (36a)
[ART D] KR = —[AR V] K (36b)
Equation (35) can be simplified as
Ki+D = K9 4+ [ARC D] KyyARTHY (37)

The following three steps are used to prove the conclusion:

1) For the initial approximationthe stiffness matrix of the reduced
model is K(RO). From Eq. (31) we know it retains the rigid mode(s)
of the full model.

2) Suppose the ith approximate stiffness matrix contains the rigid
mode shape(s) g, that is,

KV gy =0 (38)

3) Let us consider the (i 4+ 1)th approximate stiffness matrix of
the substructure. Substituting Eq. (34) into Eq. (37) resultsin

K =K + K9] [EV] KuEOKY (39)

Using Egs. (31) and (38) results in
i D1 T 17 i) i
K gy = K 0o + [KP] [EV] KiEVKPpu =0 (40)

Equation (40) means that the (i + 1)th approximate stiffness ma-
trix KX *D als0 contains the same rigid mode shape(s) of the full
model.

Based on the statements 1-3, we concludethat the reduced model
contains the rigid mode(s) of the full model during iterating. There-
fore, the present method is still valid when the substructure is free
or there is rigid mode(s) in the substructure. This conclusion was
tested analytically on a three-DOF mass-stiffness system.!*

QU

Numerical Examples
Beam-Spring System

A simple system shown in Fig. 2 will be considered first. It con-
sists of two identical beams connected by six springs. The proper-
ties of the two beams are total length L =2.0 m, area of the cross
section A =2.4 x 10~* m?, area moment of inertia of the section
I =28.9 x 10~° m*, modulus of elasticity E =2.0 x 10'! N/m?, and
mass density p =7800 kg/m®. The linear stiffness of the springs
is k=2.0 x 10° N/m. Also, the six springs are assumed to be
nonlinear with a cubic stiffening nonlinearity B =2.0 x 10'*N/m?.
This means that the spring force for an absolute displacement x is
f =kx + Bx*. The two beams are both discretized by the finite el-
ement method. Each beam has a total of 20 elements, 21 nodes, and
42 DOFs, as shown in Fig. 3. Therefore, the global full model has a
total of 82 DOFs.

Many methods can be implemented to solve the nonlinear dy-
namic Egs. (16), (22), and (26) in the frequency domain. Some
typical versions are the perturbation, Ritz, Galerkin, and harmonic
balance methods. The detailed information about these methods
can be found from Ref. 15. The harmonic balance method is used
to solve the nonlinear equations in this paper.

Assume that the excitations have the form of F = F sin(wt). If
only the periodic motions are considered, the steady-state response
is expressed as

X =Y aycos(jor) + by sin(jor) (41)

j=1

For simplicity, only the first two terms, which have the same har-
monic with the excitation, are applied to calculate the response, that
is,

x; = a; cos(wt) + b; sin(wt) 42)
The corresponding amplitude is
|x;| = +/a? + b? (43)

Introducing Eq. (42) into Eq. (16), (22), or (26) gives a set of si-
multaneous polynomialsin the constants a; and b;. These nonlinear
polynomial equations can be solved using the Newton-Raphson
method.

Assume a unit force is acted on node 9 at the transverse direc-
tion. The amplitude-frequency relation curves (backbone curves)
at nodes 9 and 30 resulted from the full global model are plotted

10°

10"
10?

10°

FRF

10*
10°
10°

107

10°

600 9200 1200

Frequency (rad/s)

0 300 1500

Fig.3 FRFs with and without nonlinear springs.
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Fig.2 Schematic of a beam-spring compound system.



in Fig. 3. In this figure L and N denote linear and nonlinear, re-
spectively; 9 and 30 are node numbers. For simplicity, the jumps
of the amplitudes are kept in these curves. Therefore, they are not
exactly backbone curves. Although they are approximate, they will
serve the purpose to check the accuracy of the reduced model. The
transverse frequency response function (FRF) at nodes 9 and 30 for
the system without nonlinear springs, indicated by L, is also plot-
ted in Fig. 3 for comparison. In these four curves the proportional
damping, C =2 x 107K, is assumed for the two beams. For conve-
nience the amplitude-frequencycurves of the nonlinear system are
also called FRFs.

At first, the model reduction scheme defined on the system level
is used. The transverse DOFs atnodes 1, 5,9, 13, 17,21, 7, and 15
in the upper beam and nodes 22, 26, 30, 34, 38, 42, 28, and 36 in
the lower beam are selected as the kept DOFs when the dynamic
condensation method is applied. Hence, the reduced model has 16
DOFs includingthe two fixed ones. After the linear reduced model is
available, the nonlinear springs are directly assembled to formulate
the reduced global model. Again, the harmonic balance method is
used to solve the nonlinear equations of the reduced model.

The FRFs of the reducedmodel at nodes 9 and 30 in the transverse
directionsare plottedin Fig. 4, respectively. The exactresultsare also
plotted for comparison. In the following, if the FRFs obtained from
the reduced model are very close to those from the full model we
will say the reduced model can represent accurately the full model
at that frequency range. The accuracy of the FRFs resulted from the
initial approximation of the reduced model is very low especially
for the FRFs at the high frequency range. With the increase in the
number of iterations, the FRFs close to the exact solution quickly.
The FRFs resulting from the second approximation, for example,
are very close to the exact except at the jump around 1000 rad/s.
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Fig.4 FRFs of the reduced model defined on the system level.
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Fig. 5 FRFs of the reduced model defined on the substructure level.

The reason for this discrepancy at this jump is that these curves
are not exact backbone curves. Actually, the difference between the
approximate FRFs with i =2 and the exact is very small.

The two beams are selected as the flexible substructures when the
model reduction scheme defined on the substructure level is used.
The same kept DOFs are chosen for each beam. Because the two
beams are identical, it is necessary to construct only one reduced
model for the beams using the dynamic condensation technique.
The system modeling scheme shown in Fig. 1 is used. The reduced
global model has 16 DOFs including the two fixed.

Similarly, the FRFs of the reduced model at nodes 9 and 30 are
plotted in Fig. 5. The exact results are also plotted for comparison.
The accuracy of the initial approximationis low, especially for the
FRFs at the high-frequency range, as shown in Fig. 5. With the
increase in the number of iterations, the FRFs close to the exact
solutionquickly. The firstapproximation,forexample,is much more
accurate than the initial approximation.

The accuracy of the approximate FRFs resulted from the reduced
model defined on the system level is a little higher than the reduced
model defined on the substructurelevel. This phenomenonbecomes
obvious when i =1 and 2, as shown clearly in Figs. 4 and 5.

For this example, 751 time stepis used to simulate the FRFs of the
full global model and the reduced global models. The code is run in
a Sun 4500 computer with 400 x 8§ MHz CPU, 4-GB memory. The
computed time for the two models are 2999, 26 and 25 s, respec-
tively. Clearly, the reduced model is much more computationally
efficient than the full model.

Floating Raft Isolation System
For the second example, a floating raft isolation system'? is con-
sidered. It contains springs, dampers, machines to be isolated, a
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Fig. 6 FREFs of the floating raft isolation system.
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Fig.7 Error of the FRFs of the reduced model defined on system level.

raft frame, and a base. It is very difficult to construct a reason-
able dynamic model by using multi-rigid-body method or elastic
wave analysis method when the raft frame and the base are a little
complex, their elasticity are to be considered, and there are local
nonlinearities?

One spring with cubic stiffeningnonlinearity, B =5 x 10'° N/m?,
is mounted under masses 1 and 2, respectively. For both plates the
damping is considered to be proportionalto their stiffness matrices,
and the ratio is 0.0003. The other parameters are identical to those
in Ref. 13. The base and the raft are discretized by the finite el-
ement method. The base has 14 rectangular elements, 24 nodes,
and 72 DOFs. The raft has 24 rectangular elements, 35 nodes,
and 105 DOFs. Therefore, the full global model has a total of
167 DOFs except the fixed. Select the translational DOFs at m
and node 11 on the base as the input and output DOFs, respectively.
The FRFs obtained from the full global finite element model are
plotted in Fig. 6. They are considered as the exact for comparison
purpose.

For the model reduction method defined on the system level, the
translational displacementsin the z directionat nodes 1, 3, 5, 7, 15,
17,19,21,29,31,33,and 35 ontheraftandnodes7,12,13,18,8, 11,
14,17,9,10, 15, and 16 on the base, and masses 1 and 2 are selected
as the kept DOFs. The FRFs resulting from the initial approximation
of the reduced model are shown in Fig. 6 and indicated by SY. The
relative errors of the FRFs obtained from the reduced models with
different approximations are plotted in Fig. 7. The accuracy of the
FRFs obtained from the initial approximation is very low. Most
errors are higher than 10%. When the iteration is applied, the errors
are reduced very quickly. The maximum errors, for example, are
reducedto 11.7,4.1,and 1.9% after one, two, and three iterations are
used.

QU

10"

10

10

Error

10*

10°

10°* b—r—r—"—7F—4"—"m—"7—"1T"—T—"+7T+—— x
100 150 250
Frequency (Hz)

Fig.8 Error of the FRFs of the reduced model defined on substructure
level.
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The two platesin the systemare seen as two flexible substructures
when the model reduction defined on the substructurelevel is used.
The same DOFs on the two plates just used are selected kept DOFs.
Both reduced models of the plates have 12 DOFs. Therefore, the
reduced global model has 26 DOFs. The FRFs resulting from the
initially approximate reduced model are also shown in Fig. 6 and
indicated by SU. The errors of the FRFs obtained from the reduced
models for different approximationsare plotted in Fig. 8. Similarly,
the errors of the initial approximate FRFs are very big. The error is
reduced when the iteration increases, especially for the FRFs at the
high-frequencyrange.

For this example, 2501 time step is used to simulate the FRFs
of the full global model and reduced global models. The code is
run in the same computer as just stated. The computed time for the
two models are 1452, 6, and 6 s, respectively. The reduced model is
much more computationally efficient than the full model. The cur-
rent computer time is shorter than thatin the first example although
the number of DOFs of the present example is about double that of
the first example. The reason is that the nonlinearity in the present
example is much more localized than that in the first example. Con-
sequently, more iterations are required in the first example.

The initially approximate FRFs resulting from the two model
reduction approaches are very close, as shown in Fig. 6. However,
the differencebecomesclear when the iterationis applied. The errors
of the FRFs resulting from the reduced models for i =1 and 3 are
plottedin Fig. 9. Clearly, the accuracy of the modelreductiondefined
on the system level is much higher than the one defined on the
substructure level.

Comparing the FRFs fori =0in Fig. 6 with thosein Figs. 4 and 5,
we find the accuracyof the formeris higherthan that of the latter two.



One of the reasons is that the nonlinearity in the second example
is much more localized than that in the first example. Therefore,
the present methods have higher accuracy for the system with local
nonlinearities.

Conclusions

Based on the dynamic condensationtechnique, two model reduc-
tion approaches have been proposed in this paper. They are used
to reduce the size of the large model with local nonlinearities be-
fore the analysis is performed on the global model. One is defined
on the system level, and the other is on the substructure level. In
the former scheme the dynamic condensation technique is directly
implemented into the linear part of the whole system, whereas it is
applied to the linear flexible substructuresin the latter scheme.

As shown in the two numerical examples, the computational
work can be reduced significantly by using the two approaches.
Although some computational effort is required to construct the
reduced model, this work is much less than the analysis of the non-
linear model directly and only required once.

The accuracy of the reduced models based on the initial approx-
imation, Guyan condensation, is very low. When the iterations are
applied, the accuracy increases very quickly. As shown from the ex-
amples, two or three iterations are usually enough for the accuracy.

The accuracy of the model reduction method defined on the
system level is usually higher than that of the method defined on the
substructure level, especially for the higher-order approximations.
However, the former is more computationally expensive than the
latter because the manipulation of larger matrices is required in the
former approach.
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